Health and ICT Social Science Perspective

Dr Charles Musselwhite
Associate Professor (Reader) in Gerontology,
Deputy Director, OPAN Cymru,
Research Institute for Applied Social Sciences

c.b.a.musselwhite@swansea.ac.uk
www.drcharliemuss.com
Research Institute for the Applied Social Sciences

Theoretical angles

Examples

Ways forward
Research Institute for Applied Social Sciences (RIASS)
The home of applied social science at Swansea University

Cross-University collaboration bringing together Research expertise within the social, human, health and environmental sciences.

Host of the Swansea arm of the ESRC Wales Doctoral Training Centre.
9 research centres

- Centre for Migration Policy Research (Professor Heaven Crawley)
- Swansea Centre for Health Economics (Professor Ceri Philips)
- Centre for Criminal Justice and Criminology (Professor Kevin Haines)
- Centre for Innovative Ageing (Professor Ness Burholt)
- Global Drug Policy Observatory (Dr. David Bewley-Taylor)
- Wales Observatory on Human Rights of Children and Young People (Jane Williams and Dr. Simon Hoffman)
- Welsh Economy and Labour Market Evaluation and Research Centre (Professor David Blackaby)
- Language Research Centre (Professor Nuria Lorenzo-Dus)
- QUEST - Qualitative Enquiry Supporting Trials (Professor Frances Rapport)
Theoretical angles
ICT

cultural

societal

individual

Chrono-system

Technocultural theories

Socio-technical

Socio-political

HCI

Ergonomics

Needs/

Requirements

Norms

Attitudes/acceptability

Adoption of Technology
Research examples
Teleworking:
1993 by 2010: 80% of office workers would work from home/Remotely
Telehubs etc. (AT&T, 1993)

- Remove the need for physical/literal/corporeal travel
- Reduce need for workspace
- Did it happen? No?
- Why?
- Technology IS there and IS good quality.
• Socio-legal:– Risk, compensation, liability

• Group behaviour – control, trust

• Face to face – better – but why?

• Norms
Potential

• Increase in technology and networking
• Increased accessibility
• Increased use – buying, talking, making friends, “visiting”, watching, interacting
• Own time

Challenges

• What is missing from the “virtual” world compared to “reality”?
 – Touch, smell, sense, continuity, impression managed, staged
 – Informal, random, chance meetings
• Equal access?

“I will order stuff on the Internet rather than going to town to buy it, so I don’t make that journey and it is just so much simpler on the Internet. Somebody else comes and drives and delivers it to your door (Male 60s).”

“I certainly see more of my grandson because of Skype (Female 60s).”

“If I couldn’t get to places..., although I’ve got a computer, I would stagnate. Because I like the social aspect of things. And I like the different characters you come across and it stimulates your thinking and makes life worthwhile to be able to go out and meet others (Male 70s)”

Advanced vehicle control and safety systems:
Promise we would be in self-driving cars by 2010 (e.g. Navlab, 1996)

• Did it happen?

• No?
 • Technology IS there and IS high quality?
 – Been there since 1996
 • Why hasn’t it happened?
New technologies are voluntary
Any mandatory technology will need political will and hence public acceptability
Acceptability is related to (appropriate) uptake and (successful) use

TECHNOLOGY
- **relative advantage** (the extent to which it offers improvements over available tools),
- **compatibility** (its consistency with social practices and norms among its users),
- **complexity** (its ease of use or learning),
- **trialability** (the opportunity to try an innovation before committing to use it),
- **observability** (the extent to which the technology's gains are clear to see).

PERSON
- **Background characteristics** (age, gender, socio economic background),
- **Cognitive style** (how information is processed),
- **Attitudes** (towards technology, towards related items),
- **Personality** (need for achievement, degree of defensiveness, locus of control, and risk-taking propensity),

Changes over time – Innovation Diffusion (Rogers, 1995)
Technology / Person interaction
• Nanotechnology for health in later life

• Great potential for nanohealth to improve the health and wellbeing of older people

• But awareness and acceptability of emerging nanotechnologies is lower than other age groups (Bossard & Nisbet, 2007; Ho, Brossard & Scheufele, 2008)

• Especially low amongst those from multiple marginalities (Beech, Cobley, Musselwhite & Phillips, in preparation)

• Will this have an effect on uptake?

• Nanodivide within the Western World?
Taylor-Whilde, Tenge, Nash et al.

OPAN funding to look at:-

• Can a remote monitoring nano-technology patch measuring vital signs such as oxygen saturation levels; temperature, hydration and blood glucose levels prevent patient deterioration in older patients with dementia at home and reduce GP consultations, admission to acute care and length of stay?

Individual level

• Can such a device be worn by the patient comfortably without allergy and for a reasonable length of time? Can the device be worn during Activities of Daily Living (ADL) such as bathing?

Social and cultural levels

• What are the behavioural and cultural changes necessary in order to adopt such technology within the NHS and how do we accelerate such adoption?
Ways forward
Much funding streams are moving towards research that solves societies problems

Especially EU

Engineering and technology can only do so much

Need to understand the user and the social context within which technology is used

Need for the social sciences to work with engineering and technology at a variety of levels

- Individual
- Social
- Cultural
Dr Charles Musselwhite
Associate Professor/Reader
Centre for Innovative Ageing
School of Human and Health Sciences
Rm 309, Vivian Building
Swansea University
Singleton Park
Swansea
SA2 8PP

c.b.a.musselwhite@swansea.ac.uk

www.drcharliemuss.com
www.swansea.ac.uk/riass/